Exponenciális Egyenletek Feladatok

Műanyag Virágcserép 70 Cm

Hát így elsőre ez egy elég ronda képlet, de mindjárt kiderül, hogy nem is olyan rémes. Egy 90-stronciummal szennyezett területen hány százalékkal csökken 40 év alatt a radioaktív atommagok száma? Hány százalékkal csökken 100 év alatt a 90-stroncium mennyisége? A 90-stroncium felezési ideje 25 év, tehát képletünk valahogy így néz ki: Íme, a képlet: Ha 40 év telik el, akkor t helyére 40-et írunk: Ezt beírjuk a számológépbe… 40 év alatt tehát a 33%-ára csökken a 90-stroncium atommagok száma. Most nézzük, mi történik 100 év alatt. Ha 100 év telik el, nos, akkor t helyére 100-at kell írnunk: Vagyis 100 év alatt 6, 3%-ra csökken a radioaktív atommagok száma. Újabb rémtörténetek következnek exponenciális egyenletekkel. Itt is jön az első: Itt van aztán ez: Eddig jó… Vannak aztán első ránézésre eléggé rémisztő egyenletek is. Itt jön néhány újabb remek exponenciális egyenlet. Okostankönyv. Nézzünk egy másikat. Most pedig lásunk valami izgalmasabbat. Így aztán elhatalmasodik rajtunk az érzés, hogy le kéne osztani 4x-nel.

  1. Matek otthon: Exponenciális egyenletek
  2. Exponenciális egyenletek | mateking
  3. Exponenciális egyenletek by Bozsik Ani
  4. Okostankönyv
  5. Matematika - 11. osztály | Sulinet Tudásbázis

Matek Otthon: Exponenciális Egyenletek

Matematika - 11. osztály | Sulinet Tudásbázis Exponencialis egyenletek feladatok Exponenciális egyenletek | Új változó bevezetésével láthatóvá válik a másodfokú egyenlet. Az exponenciális egyenletek megoldásának utolsó lépése mindig az exponenciális függvény szigorú monotonitásából következik. Ha az alapok és a hatványok egyenlők, akkor a kitevők is. Másodfokú egyenletet kaptunk, melyet a megoldóképlettel oldunk meg. A gyökök egészek, tehát benne vannak az értelmezési tartományban. Az ellenőrzés azt mutatja, hogy mindkét megoldás helyes. A következő feladathoz új ötletre van szükség, a kitevőket nem lehet egyenlővé tenni. Alkalmazzuk a hatványozás azonosságát, miszerint ha a kitevőben összeg van, azt azonos alapú hatványok szorzataként is írhatjuk. Ezután vonjuk össze a bal oldalt. A ${2^x}$ (ejtsd: 2 az x-ediken) ki is emelhető, hogy világosabb legyen az összevonás. Innen már ismerős a módszer, megegyezik az előző példák megoldásával. Az eredmény helyességét az ellenőrzés igazolja. Matek otthon: Exponenciális egyenletek. A következő feladatot is ezzel a módszerrel oldjuk meg!

Exponenciális Egyenletek | Mateking

Neked is a mumusod az exponenciális és logaritmus egyenletek témaköre? Nem olyan nehéz, mint képzeled! Ha tudod a megoldási lépéseket, és begyakorlod az alapokat, értelmezési tartományokat, akkor nem fog kifogni veled ez a témakör! A csomagban 34 db videóban elmagyarázott érettségi feladat linkje és a 13 db oktatóvideó linkje segítségével rá fogsz jönni a csavarokra, úgy magyarázom el, hogy meg fogod érteni ezt a témakört is! Az exponenciális egyenlet szorosan összefügg a logaritmus egyenletekkel, így egyben van a két témakör ebben a csomagban. Exponenciális egyenletek | mateking. Bevallom, nekem a kedvencem:) Szeretném, ha te is megszeretnéd! A feladatok tanulási és nehézségi sorrendben kerültek feltöltésre, hogy lépésről-lépésre tudj benne haladni! Kérd a hozzáférésedet, rendeld meg a csomagodat! Ilyen videókra számíthatsz: Ez egy oktatóvideó: Ez egy érettségi példa: A csomag tartalma: OKTATÓTVIDEÓK: Alapismeretek: - Hatványozás azonosságai, gyakorlás Exponenciális egyenletek bemutatóvideók: - Exponenciális egyenletek - 1. típuspélda - Exponenciális egyenletek - 2. típuspélda - Exponenciális egyenletek - 3. típuspélda - Exponenciális egyenletek - 4. típuspélda Logaritmus egyenletek bemutatóvideók: - Logaritmus megértése 1.

Exponenciális Egyenletek By Bozsik Ani

11. évfolyam Egyenlőtlenségek - exponenciális KERESÉS Információ ehhez a munkalaphoz Szükséges előismeret Egyenlőtlenségek megoldása grafikus úton. Módszertani célkitűzés 2 x > x 2 egyenlőtlenség megoldása grafikus úton Az alkalmazás nehézségi szintje, tanárként Könnyű, nem igényel külön készülést. Módszertani megjegyzések, tanári szerep A tanegység használatát úgy kezdjük, hogy a "Relációs jel" gombot kikapcsolva tartjuk. Fontos, hogy először a diákok maguk állapítsák meg a két kifejezés közötti relációt az egyes értékek esetén. Felhasználói leírás BEVEZETŐ FELADAT Bármely valós a és b számról el tudjuk dönteni, hogy milyen relációban állnak egymással. Exponenciális egyenletek feladatok. Három eset lehetséges: a > b vagy a < b vagy a=b. Ha kifejezéseket kapcsolunk össze jelekkel, egyenlőtlenségeket kapunk. Algebrai úton nehezen, vagy középiskolai módszerekkel egyáltalán nem megoldható egyenlőtlenségek megoldásában lényeges szerepet játszik a grafikus ábrázolás. A grafikonok megrajzolása minden esetben sokat segíthet a megoldáshalmaz megtalálásában.

Okostankönyv

Ha egy egyenletben az ismeretlen a kitevőben van, azt exponenciális egyenletnek nevezzük. Az ilyen egyenletek megoldásakor - ha lehet -, akkor megpróbáljuk az egyenlet két oldalát azonos alapú hatványként felírni, s ezek egyenlőségéből következik a kitevők egyenlősége (mert az exponenciális függvény kölcsönösen egyértelmű). Példák: 2 x = 16 2 x = 2 4 Az exponenciális függvény kölcsönösen egyértelmű, így x = 4 -------- (1/5) 2x+3 = 125 (5 -1) 2x+3 = 5 3 5 -2x-3 = 5 3 Az exponenciális függvény kölcsönösen egyértelmű, így -2x-3 = 3 -2x = 6 x = -3 -------- 10 x = 0, 0001 10 x = 10 -4 Az exponenciális függvény kölcsönösen egyértelmű, ezért x = -4 -------- (1/125) 3x+7 = ötödikgyök(25 4x+3) Az ötödikgyököt átírjuk 1/5-dik kitevőre; illetve alkalmazzuk a hatvány hatványozására vonatkozó azonosságot: kitevőket összeszorozzuk. (5 -3) 3x+7 = ((5 2) 4x+3) 1/5 5 -9x-21 =(5 8x+6) 1/5 5 -9x-21 = 5 (8x+6)/5 Az exponenciális függvény kölcsönösen egyértelmű, így -9x - 21 = (8x + 6)/5 -45x - 105 = 8x + 6 -111 = 53x -111/53 = x -------- Egy másik módszer, hogy új ismeretlent vezetünk be, annak érdekében, hogy egyszerűbben kezelhessük az egyenletet.

Matematika - 11. OsztáLy | Sulinet TudáSbáZis

Végül egy harmadik feladattípus következik: a másodfokú egyenletre visszavezethető exponenciális egyenlet. Vegyük észre, hogy a ${4^x}$ (ejtsd: négy az ikszediken) a ${2^x}$ négyzete. Vezessünk be egy új változót, a ${2^x}$-t jelöljük y-nal. Az y beírása után másodfokú egyenletet kapunk. Ennek a megoldása még nem a végeredmény, ki kell számolni az x-eket is. Itt felhasználjuk, hogy a számok 0. hatványa egyenlő 1-gyel. A kapott gyökök helyesek. Ha az egyenletben az ismeretlen a kitevőben van, akkor exponenciális egyenletről beszélünk. Többféle exponenciális egyenlettel találkoztunk. A legegyszerűbbeknek mindkét oldala egytagú. Ezeket úgy alakítjuk át, hogy ugyanannak a számnak a hatványai legyenek mindkét oldalon. Ha az egyik oldal többtagú és a kitevőkben összeg vagy különbség szerepel, a megfelelő hatványazonosságot alkalmazzuk, majd összevonunk, és osztunk a hatvány együtthatójával. A harmadik típusfeladat a másodfokúra visszavezethető exponenciális egyenlet. Ez tartalmaz egy hatványt és egy másik tagban annak a négyzetét.

Azt, hogy éppen hány milligramm baktériumunk van ezzel a kis képlettel kapjuk meg: Itt x azt jelenti, hogy hányszor 25 perc telt el. A mi kis történetünkben két óra, vagyis 120 perc telik el: Tehát ennyi milligramm lesz a baktériumok tömege 120 perc múlva. Egy másikfajta baktérium generációs ideje 12 perc, vagyis 12 percenként duplázódik meg a baktériumok száma. Egy tenyészetben 736 milligramm baktérium van. Mennyi idő telt el azóta, amikor még csak 23 milligramm volt a tenyészetben? A történet úgy szól, hogy kezdetben volt 23 milligramm, a végén pedig 736: De az x=5 nem azt jelenti, hogy 5 perc telt el… Az x=5 azt jelenti, hogy 5 generációnyi idő telt el: Vagyis 60 perc telt el. A radioaktív anyagok felezési ideje azt jelenti, hogy mennyi idő alatt csökken a radioaktív anyagban az atommagok száma a felére. A 239-plutónium felezési ideje például 24 ezer év, a 90-stronciumé viszont csak 25 év. Ez a remek kis képlet adja meg a radioaktív bomlás során az atommagok számát az idő függvényében.